Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis

نویسندگان

  • Jin Wang
  • Xiangping Sun
  • Saeid Nahavandi
  • Abbas Z. Kouzani
  • Yuchuan Wu
  • Mary Fenghua She
چکیده

Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-clustering for Weblogs in Semantic Space

Web clustering is an approach for aggregating web objects into various groups according to underlying relationships among them. Finding co-clusters of web objects in semantic space is an interesting topic in the context of web usage mining, which is able to capture the underlying user navigational interest and content preference simultaneously. In this paper we will present a novel web co-clust...

متن کامل

Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges

Text is a very important type of data within the biomedical domain. For example, patient records contain large amounts of text which has been entered in a non-standardized format, consequently posing a lot of challenges to processing of such data. For the clinical doctor the written text in the medical findings is still the basis for decision making – neither images nor multimedia data. However...

متن کامل

Word Clustering using Long Distance Bigram Language Models

Two novel word clustering techniques employing language models of long distance bigrams are proposed. The first technique is built on a hierarchical clustering algorithm and minimizes the sum of Mahalanobis distances of all words after cluster merger from the centroid of the resulting class. The second technique resorts to the probabilistic latent semantic analysis (PLSA). Interpolated versions...

متن کامل

Hierarchical topic organization and visual presentation of spoken documents using probabilistic latent semantic analysis (PLSA) for efficient retrieval/browsing applications

The most attractive form of future network content will be multi-media including speech information, and such speech information usually carries the core concepts for the content. As a result, the spoken documents associated with the multi-media content very possibly can serve as the key for retrieval and browsing. This paper presents a new approach of hierarchical topic organization and visual...

متن کامل

Classification and clustering methods for documents by probabilistic latent semantic indexing model

Based on information retrieval model especially probabilistic latent semantic indexing (PLSI) model, we discuss methods for classification and clustering of a set of documents. A method for classification is presented and is demonstrated its good performance by applying to a set of benchmark documents with free format (text only). Then the classification method is modified to a clustering metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 2014